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Dislocations 

 Dislocations are 1D (line) defects, which play an important role 
in a variety of deformation processes (such as creep, fatigue and 
fracture) of a crystal. 

 Dislocations can play a constructive role in crystal growth.  
 They can also provide shortcut paths for diffusion (pipe diffusion) 



Understanding the Role of Dislocations in Material Behavior 

Consider a dislocation in an infinite crystal 

Take into account finite crystal effects 

Consider interaction of dislocations with other defects 

Stress fields, strain fields, energy etc. 

Free surfaces, grain boundaries etc. 

Interactions with other dislocations, interstitials, precipitates etc. 

Collective behavior and effects of external constrains 
 Long range interactions & collective behavior & external 
constraints 



Slip 
(Dislocation  

motion) 

Plastic Deformations in Crystalline Solids 

Twinning Phase Transformation Creep Mechanisms 

Grain boundary sliding 

Vacancy diffusion 

Dislocation climb 

+ Other Mechanisms 

Fivefold twinning in a gold 
nanoparticle (electron microscope 
image). 



Plastic Deformation of a Crystal by Shear 
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Displacement

Sinusoidal relationship 

Realistic curve 

Considering the shearing of an entire plane of atoms over one another, which causes a plastic 
deformation by shear. 

Initial configuration Final configuration 

Entire row of atoms sliding past another 



As a first approximation, the stress-
displacement curve can be written as 

At small displacements, 
Hooke’s law should apply 

For small x/b 

Hence the maximum shear 
stress at which slip should occur 

If b ~ a 



The shear modulus of metals is in the range 20 – 150 GPa 

DISLOCATIONS 

 However, experimental shear stress is only  0.5 – 10 MPa  
    i.e. (Shear stress)theoretical > 100 × (Shear stress)experimental !!! 

Dislocations severely weaken the crystal 

 The theoretical shear stress will be 
in the range 3 – 30 GPa 



 Dislocations play diverse roles in determining materials structures and 
behaviors. 

 The most important role is to weaken the crystal strength. 
 The role of dislocations in materials involves the interactions of a dislocation 

with other dislocations and defects in the material, which result in 
‘hardening’ of the crystal, i.e., strengthening of the weakened crystal. 

 The continuum construction of a dislocation had been proposed by Volterra in 
1905. 

 But as late as in 1930, the reason behind the weakening of a crystal was still 
not clear: Why a rod of copper can be bent easily. 

 In 1934, Taylor, Orowan and Polanyi postulated the presence of dislocations as 
a mechanism of weakening of a crystal. 

 The presence of dislocations was confirmed by electron microscopy in 1950s 

See: G.I. Taylor, Proceedings of the Royal Society A, 145 (1934) 362. ◘ E. Orowan, Zeit. Physics, 89 (1934) 605. ◘ N. Polanyi, Zeit. Phys. 89 
(1934) 660; and Vito Volterra,  1905. 

Historical Overview of the Idea of “Dislocations” 



A dislocation has associated with it two vectors: 



Edge Dislocation 
Determination of Burgers vector in a dislocated crystal using Right Hand Finish-to-
Start Rule (RHFS) 
 In a perfect crystal, make a circuit (e.g. 8 atomic steps to right, 7 down, 8 left & 7 

up). The circuit is Right Handed. 
 Do the same in the same in the dislocated crystal. The ‘missing link’ (using some 

convention like RHFS) is the Burgers vector. 

RHFS:  
Right Hand Finish to Start convention Note: the circuit is drawn away from the dislocation line 



 The edge dislocation is NOT the ‘extra half-plane’, neither the ‘missing half-
plane’. It is the line between the ‘extra’ and the ‘missing’ half-planes. 

 The regions far away from the dislocation line are perfect → all the ‘deformation’ 
is concentrated around the dislocation line. 

 The stress field of the dislocation is a ‘long range’ field. 

Understanding the Edge Dislocation 



Edge Dislocation 

t


b


Dislocation line 



Slipped 
part 

of the 
crystal 

Unslipped 
part 

of the 
crystal 

Edge dislocation can be 
considered as a boundary 
between the slipped and the 
unslipped parts of the crystal 
lying over a slip plane* 

* this is just a way of visualization and often the slipped and unslipped regions may not be distinguished 



Screw Dislocation 

Note: The figure shows a Right Handed Screw (RHS) dislocation 

Slip Plane 



 Dislocation can be considered as the boundary between the slipped and 
the unslipped parts of the crystal lying over a slip plane. 

 For an edge dislocation, the intersection of the extra half-plane of atoms 
with the slip plane defines the dislocation line. 

 Direction and magnitude of slip is characterized by the Burgers vector 
of the dislocation . 

 The Burgers vector can be determined by the Burgers Circuit. The right 
hand screw (finish to start) convention is used for determining the 
direction of the Burgers vector. 

 As the periodic force field of a crystal requires that atoms must move  
from one equilibrium position to another, which implies that b connects 
one lattice position to another for a full dislocation. 

 Dislocations tend to have as small a Burgers vector as possible. 
 Dislocations are non-equilibrium defects and would leave the crystal if 

given an opportunity  



Geometric Properties of Dislocations 

 In an edge dislocation : b is perpendicular to t 
 In a screw dislocation : b is parallel to t 
 Other properties are as in the table below 



EDGE 

DISLOCATIONS 

MIXED SCREW 

 Under an observation of Al film with TEM, one usually finds curved dislocation 
lines, indicating that dislocations have a mixed character and ideal Edge and 
Screw dislocations are extremes. 

 The character of the dislocation will change from position to position along the 
dislocation line. 

 Under special circumstances Pure Edge, Pure Screw or a Mixed Dislocation with 
a fixed percentage of edge character can form. 
For example, in a GeSi epitaxial film on Si substrate, 60° misfit dislocations can 
form, where the dislocation lines are straight with the angle between b and t 
being 60°).  



 Except in special circumstances, dislocations tend to have mixed edge and screw 
character.  

 For a curved dislocation, the edge and screw character can change from point to 
point. 

 In a dislocation loop, only ‘points’ have pure edge or pure screw character 
Edge: b ⊥ t 
Screw: b || t 

 

Mixed Dislocations 
Dislocations with mixed edge and screw character 

Vectors defining a dislocation 

b 
+ve Edge −ve Edge 

RHS 

LHS 
Slip Plane 

Red line is the loop 



Except for points S and E, the remaining portion of the 
dislocation line has a mixed character 

Mixed Dislocations 



Edge and Screw Components of the Effective Burgers Vector  
The b vector is resolved into components: 
 ‘parallel to t’ → screw component and  
‘perpendicular to t’ → edge component 

Components of the 
mixed dislocation at P 

Screw Component 

Edge component 

Edge component 

Screw component 



Dislocations can move under an externally applied stress. Two 
possible motions of a dislocation: Glide and Climb. 
 Local shear stresses on the slip plane can drive the motions of 

dislocations. The minimum stress required to move a dislocation is 
called the Peierls-Nabarro (PN) stress. 

 Dislocations may also move under the influence of other internal stress 
fields produced by other dislocations, precipitates, or those by phase 
transformations etc. 

 Dislocations are attracted by free-surfaces and interfaces with softer 
materials and may move because of the attractive Image Force. 

 In any case, the Peierls stress must be exceeded for the dislocation to 
move. The value of the Peierls stress is different for the edge and the 
screw dislocations. 

 Plastic deformation is due to that the dislocation moves and leaves the 
crystal. When the dislocation leaves the crystal, a surface step with a 
height ‘b’ is created and the stress and energy stored in the crystal due to 
the dislocation is relieved. 

Motion of Dislocations 



 For an edge dislocation, b ⊥ t , which define the slip plane. 
 Dislocation climb involves addition or subtraction of a row of 
atoms below the half plane:  
 ► +ve climb = climb up → removal of a row of atoms 
 ► −ve climb = climb down → addition of a row of atoms 

Motion of Edge 
Dislocation 

Conservative  
(Glide) 

Non-conservative 
(Climb) 

Motion of dislocations 
On the slip plane 

Motion of dislocation 
⊥ to the slip plane 



Edge Dislocation Glide 

Surface step 
(atomic dimensions) 

Motion of an edge dislocation leading to the formation 
of a step (of ‘b’) 

Shear stress 



Motion of a 
Screw 

Dislocation 
Leading to a 

Step of b 

Note: Schematic diagrams 



Surface step 

When the dislocation leaves the crystal, the stress field associated 
with it is relieved. However, it costs some energy to create the 
extra surface corresponding to the step. 

 Are these steps visible? 
These steps being of atomic dimensions are not visible in optical microscopes. 
However, if many dislocations operate on the same slip plane then a step of nb 
(n~ 100s-1000s) is created which can even be seen in an optical microscope 
(called the slip lines). 



 The ‘first step’ of plastic deformation of a crystal is a dislocation leaving the 
crystal, leading to the formation of a step. 

 For continued plastic deformation, many more dislocations continue to move and 
leave the crystal. Any impediments to the motion of a dislocation will lead to 
‘hardening’ of the crystal and would stop plastic deformation, such as the pinning 
of a dislocation.  

 Once a dislocation has been pinned, it can either ‘break down the barrier’ or 
‘bypass’ the barrier.  

 Bypassing the barrier can occur via mechanisms such as:  Climb  Cross Slip 
  …. 

 In climb and cross slip, the dislocation leaves its ‘current’ slip plane and moves to 
another slip plane, thus avoiding the barrier. These processes (climb and cross slip) 
can occur independent of the pinning of the dislocation! 

Dislocations leaving the slip plane 



Dislocation leaving/changing 
the slip plane 

Screw Dislocation 

Edge Dislocation Climb 

Cross Slip 

Non-conservative:  
involves mass transport 

Conservative 



 Dislocation line cannot end inside the crystal. It must 
 • Ends on a free surface of the crystal 
 • Ends on an internal surface or interface 
 • Form a loop 
 • Ends in a node 

  A node is the intersection point of more than two dislocations. 
The vectorial sum of the Burgers vectors of dislocations 
meeting at a node = 0 

Where can a dislocation line end? 



 Continuum calculations of dislocation-related stress fields and 
displacement fields are based on elastic continuum theories, 
which are valid to within a few atomic spacing (i.e. the 
continuum description fails only within about 5 atomic 
diameters/Burgers vector). 

A continuum description of a dislocation 

How to Derive the Deformation Energy of a Dislocation? 

Volterras Scheme: An arbitrary deformation of a body can be 
deduced by repeating two independent processes of combined cuts 
and shifts. 



Volterra constructions of deformations of a hollow cylinder 

Perfect cylinder 

Screw dislocation 

Edge dislocations 

Disclinations 



   

An screw dislocation produces exactly the same strain field as 
generated by the cut and shift procedure shown below: 

The elastic field in the dislocated cylinder has no 
displacements in the x and y directions, and in the z-direction,  

Screw Dislocation 



Using the equations for the strain we obtain the strain field of 
a screw dislocation: 

The corresponding stress field is also easily obtained from the 
generalized Hooke's law (G=C44) 



 In cylindrical coordinates  



The stress field of an edge dislocation can also be represented 
an appropriate cut in a cylinder. The displacement and strains in 
the z-direction are zero and the deformation is a "plane strain". 

Edge Dislocation 

The stress field of the edge dislocation 
can be depicted as (which has both 
dilational and shear components). 



 An edge dislocation produces a compressive stress field around the 
region of the extra half-plane above the slip plane and a tensile 
stress field near the region of the missing half-plane below the slip 
plane. 

 The core region, which have a singularity at x = 0, y = 0, is ignored 
in these equations. 

 The interaction of the stress fields of the dislocations with (i) those 
from externally applied forces, and (ii) other internal stress fields 
governs the motion of dislocation. 

Stress Fields of Edge Dislocations 



 The region near the dislocation has stresses of the order of Gpa. However, these 
stresses are the self stresses. In an infinite body, a straight dislocation line cannot 
move under the action of self stresses alone. 

 Thus, a dislocation must interact with other defects in the material via these 
‘long range’ stress fields. 

Position of the Dislocation line →  into the plane 

Edge dislocation 

  σyy 

286 Å 

28
6 

Å
 

Stress values in GPa 

  σxx 

0 

Extra half-plane 

Tensile half-space 

Compressive half-space 



Energy of a Dislocation 
 A dislocation in a crystal distorts the bonds and costs energy to the 

crystal. 
 The deformation energy is expressed as Energy per unit length of 

dislocation line 
→ Units: [J/m]. 

 An edge dislocation can generate compressive and tensile stress 
fields, while a screw dislocation can only produce shear stress 
fields. 

 The distortions are very large near the dislocation line and the linear 
elastic description fails. The estimates of this core region range 
from b to 5b, depending on the crystal in question. The structure 
and energy of the core has to be computed through other methods 
and the energy of the core is about 1/10 the total energy of the 
dislocation. 



Energy of a Dislocation 
The total energy per unit length Eul is the sum of the energy 
contained in the elastic field, Eel, and the energy in the core, Ecore. 
The strain energy for a volume element  

The best simple value for the core energy is 



⇒ Dislocations will have as small a b as possible 

Dislocations 
(in terms of lattice translation) 

Full 

Partial 

b → Full lattice translation 

b → Fraction of lattice translation 

 Put a dislocation in a crystal costs an energy, thus dislocations tend to 
have as small a b as possible. 
 There is a line tension associated with the dislocation line. 
 Dislocations may dissociate into Partial Dislocations to reduce their 
energy 

The energy of an Edge dislocation) 

γ0 - size of the control volume  ~ 70b 

Core contribution 



Dissociation of a dislocation 

Consider the reaction: 
2b → b + b 

Change in energy: 
G(2b)2/2 → 2[G(b)2/2]  

= G(b)2 
⇒ The reaction would be favorable  

Dislocations dissociate to reduce their energy cost. 



 Elastic interactions between edge dislocations on the same slip plane can be 
either Attractive or Repulsive. 

 Consider two dislocations present on the same slip plane with the extra half-plane 
on two different sides of the slip plane. One of them is positive and the other is 
negative. 

Interaction between dislocations 

Positive edge dislocation Negative edge dislocation 

ATTRACTION Can come together and cancel one another 

REPULSION 

Edge dislocation 



 Consider a Slip system of <110> {111}, a perfect dislocations can split 
into partials to reduce the elastic energy. 

 The dissociation of a dislocation into its partials leaves a Stacking Fault 
between the two partials on the slip plane. 

 The two partials repel each other and want to be as far as possible, which 
leads to a larger faulted area with an increase in energy. Thus, depending 
on the stacking fault energy, there exists an equilibrium separation 
between the partials.  

 The Shockley partial in a CCP crystal has Burgers vectors of (1/6) [211] 
type, which connect B site to C site and vice-versa.  

 For a pure edge dislocation in a CCP crystal, the ‘extra half-plane’ 
consists of two atomic planes. The partial dislocations consist of one 
‘extra’ atomic plane each. The Burgers vector of the partial is not 
perpendicular to the dislocation line. 

Dislocations in Cubic Close Packing (CCP) Crystals 



(111) 
Slip plane 
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2 > (b2
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Some of the atoms are omitted for clarity 

(b2
2  + b3

2) = 1/6 + 1/6 = 1/3 

Energy of the dislocation is proportional 
to b2. To reduce the elastic energy, the 
perfect dislocation will split into two 
partials. 

A Perfect 
Edge 
Dislocation 
and its 
Shockley 
Partials 

→ + 
Shockley Partials 



Shockley Partials 

Perfect edge dislocation (‘full’ 
Burgers vector) with two 
atomic ‘extra-half’ planes 

Partial dislocations: each with 
one atomic ‘extra-half’ plane 



 The dislocation density is a measure of how many dislocations 
are present in a quantity of a material.  

 Dislocation density: the total length of dislocation per unit 
volume. Hence the units are [m/m3].  

 Annealed crystal: dislocation density (ρ) ~ 108 – 1010 m/m3 
 Cold worked crystal: ρ ~ 1012 – 1014 m/m3 

 As the dislocation density increases the crystal becomes stronger 

Typical Values of Dislocation Density 



Jogs and Kinks 
 A straight dislocation line can have a break in it: 
 A jog moves it out of the current slip plane (→ to a parallel one) 
 A kink leaves the dislocation on the slip plane 

 The Jog and the Kink can be considered as a defect in a dislocation 
line. 

 Jogs and Kinks can be produced by intersection of straight 
dislocations. 



Jogs 
 The presence of a jog in a dislocation line increases the energy of 

the crystal. 
 The energy of a jog per unit length is less than that for the 

dislocation (as this lies in the distorted region near the core of the 
dislocation). 

 This energy is about 0.5-1.0 eV (~10−19 J) for metals. 

 b1 → Burgers vector of the dislocation 
 b2 → Length of the jog 
 α → Constant with value ∈ (0.5-1.0) 



 Two straight dislocation can intersect to leave Jogs and Kinks in the 
dislocation line. 

 These extra segments in a dislocation line cost energy and hence 
require work done by the external force ⇒ lead to hardening of the 
material. 
(Additional stress as compared to the stress required to glide the 
dislocation line is required to form the Jog/Kink) 

Dislocation-Dislocation Interactions 



 The jog has edge character and can glide (with Burgers vector = b2) 
 The length of the jog = b1. 
 Edge Dislocation-1 (Burgers vector b1) is unaffected as b2|| t1.  
 Edge Dislocation-2 (Burgers vector b2) → Jog (Edge character) → 

Length |b1|. 

(1) Edge-Edge Intersection Perpendicular Burgers vector 



 Both dislocations are kinked. 
 Edge Dislocation-1 (Burgers vector b1) → Kink (Screw character) → Length |b2| 
 Edge Dislocation-2 (Burgers vector b2) → Kink (Screw character) → Length |b1| 
 The kinks can glide  

(2) Edge-Edge Intersection Parallel Burgers vector 



 Edge Dislocation (Burgers vector b1) → Jog (Edge Character) → 
Length |b2| 

 Screw Dislocation (Burgers vector b2) → Kink (Edge Character) → 
Length |b1| 

(3) Edge-Screw Intersection Perpendicular Burgers vector 



 Important from plastic deformation point of view 
 Screw Dislocation (Burgers vector b1) → Jog (Edge Character) → Length b2 
 Screw Dislocation (Burgers vector b2) → Jog (Edge Character) → Length b1 
 Both the jogs are non conservative  

(i.e. cannot move with the dislocations by glide) 

(4) Screw -Screw Intersection Perpendicular Burgers vector 



 The stress field of a dislocation can interact with the stress field of 
point defects. 

 Defects associated with tensile stress fields are attracted towards 
the compressive region of the stress field of an edge dislocation 
(and vice versa). Higher free-volume at the core of the edge 
dislocation aids this segregation process. 

 Solute atoms can segregate in the core region of the edge 
dislocation → higher stress is now required to move the dislocation 
(the system is in a low energy state after the segregation and higher 
stress is required to ‘pull’ the dislocation out of the energy well). 

 Defects associated with shear stress fields (having a non-spherical 
distortion field) can interact with the stress field of a screw 
dislocation. 

Dislocation-Point Defect Interactions 



Stress values in GPa 

  σxx 
Position of the Dislocation line → into the plane 

Tensile Stresses 

Compressive Stresses 

0 stress line Vacancies () No interaction 

 Vacancies are attracted to the compressive regions of an edge dislocation and are 
repelled from tensile regions 

 The behavior of substitutional atoms smaller than the parent atoms is similar to 
that of the vacancies. 

 Larger substitutional atoms are attracted to the tensile region of the edge 
dislocation and are repelled from the compressive regions 

 Interstitial atoms (associated with compressive stress fields) are attracted towards 
the tensile region of the edge dislocation and are repelled from the compressive 
region of the stress field 



Point Defect Tensile Region Compressive Region 

Vacancy Repelled Attracted 

Interstitial Attracted Repelled 

Smaller substitutional atom Repelled Attracted 

Larger Substitutional atoms Attracted Repelled 

Summary of edge dislocation - point defect interactions 



ε →

σ
→

ε →

σ
→

Yield Point Phenomenon 

Interaction of the stress fields of 
dislocations’ with Interstitial atoms’ 

Schematic 

Yield Point Phenomenon 

 The interaction of interstitial carbon atoms with edge dislocations → leading to 
their segregation to the core of the edge dislocations is responsible for the Yield 
Point Phenomenon seen in the tensile test of mild steel specimens 

Interstitial Atom at the core 



Dislocation- Free surface Interaction → Concept of Image Forces 

 A dislocation near a free surface experiences a force towards the free surface, 
which is called the image force. 

 The force is called an ‘image force’ as the force can be calculated assuming an 
negative hypothetical dislocation on the other side of the surface. The attractive 
force between the dislocations (+ & −) is gives the image force. 

 If the image force exceeds the Peierls stress, then the dislocation can leave the 
crystal spontaneously without application of external stresses! 

 Hence, regions near a free surface or nano-crystals can become spontaneously 
dislocation free. In nanocrystals due to the proximity of more than one surface, 
many images have to be constructed and the net force is the superposition of 
these image forces. 



 Crystals grown under low supersaturation (~1%) the growth rate is 
considerably faster than that calculated for an ideal crystal 

 In an ideal crystal surface the difficulty in growth arises due to 
difficulty in the nucleation of a new monolayer 

 If a screw dislocation terminates on the surface of a crystal then 
addition of atoms can take place around the point where the screw 
dislocation intersects the surface (the step) → leading to a spiral 
(actually helical) growth staircase pattern 

Dislocation and Crystal Growth 



Appendix 



Why are dislocations non-equilibrium defects? 

 From the equation, if a configuration gives an entropy benefit (i.e. ∆S is positive); 
then that state will be stabilized at some temperature. 

 Introducing a dislocation into the crystal costs an energy of ~Gb2/2 per unit length 
of dislocation line; but this also gives us a configurational entropy benefit (as this 
dislocation can exist in many equivalent positions in the crystal). 

 This implies that there must be a temperature where dislocations can become 
stable in the crystal. 

 Unfortunately this temperature is above the melting point of all known materials. 
 Hence, dislocations are not stable thermodynamically in materials. 

► The energy required to create Kinks and Jogs of length ‘b’ is ~Gb3/10 
 → these can be created by thermal fluctuations 

 ∆G = ∆H − T ∆S +ve for dislocations 



What determines the Burgers vector? 

 We can ask two distinct questions: 
Q1 If a dislocation exists in a crystal, how to determine the 
Burgers vector? 
Q2 What determines the Burgers vector? 
 The answer to Q1 is by constructing a Burgers circuit. 
 The answer to Q2 is: Crystallography → For a perfect/full 

dislocation, the Burgers vector is the shortest lattice translation 
vector. 



In a cubic crystal, a dislocation line of mixed character lies along the [112] 
direction and the Burgers vector = ½[110]. What is the edge and screw 
components of the Burgers vector. Which is the slip plane. 

t 1 = [112]
2 2



1b = [110]
2



t  = [111]⊥



(110)

t 1 = [112]
2 2



1b = [110]
2



t  = [111]⊥



(110)



(on [110]) 

(on [112]) 



In a CCP crystal, is the dislocation reaction shown below feasible energetically? 
What is the significance of the vectors on the RHS of the reaction? 

This is of the form b1 → b2 + b3 The dislocation reaction is feasible if: 

As the energy of a dislocation (per unit length of the dislocation line) is proportional to b2 

⇒ the dislocation reaction is feasible (i.e., the full dislocation can lower its 
energy by splitting into partials) 
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The vectors on the RHS lie on the (111) close packed plane 
in a CCP crystal and they connect B to C sites and C to B 
sites, respectively. 
Equivalent vectors (belonging to the same family) are shown 
in the figure on the right. 



What is the image force experienced by an edge dislocation at a distance of 100b 
from the free surface of an semi infinite Al crystal?  
Is this force sufficient to move the dislocation given that the Peierls Force (= 
Peierls Stress × b) = 2.5 × 10−4 N/m? 

Data for Al: 
 a0 = 4.04 Å, Slip system: <110>{111}, b = √2a0/2 = 2.86 Å, G = 26.18 GPa, 

ν = 0.348 

−ve sign implies an attraction 
towards the free surface 

As Fimage > Fpeierls, the dislocation will spontaneously move to the surface (creating a 
step) under the action of the image force without the application of an externally 
applied stress. 
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